Evaluation of Medium/Long term Energy Efficiency Potentials

Case studies on end-use models

N DESBROSSES 6-7 February 2006

🗬 Enerdata Techno-economic (end-use) models: general architecture Demancie finale Tertiaire Résidentiel Industrie Agriculture Transport Marchandises Urbain Rural Branches Branches Passagers Irrigation Tracteurs Autres Usages Route Eau chaude IGCE Pêche Cuisson Usages Individuel Produits Eclairage Collectif lectro-ménage Us. thermiques Fer Us. électriques Chauffage Voie d'eau Climatisation

Modelling energy demand for households : global approach vs by end-use / equipement

- Ł Global approach
 -fuels
 -electricity
- Approach by end-use / equipment
 -cooking
 -water heating
 -heating
 -captive uses of electricity (lighting, household appliances)

🗬 Enerdata

Modelling energy demand for households : global approach

- E Demand : unit consumption x number of households
- L unit consumption of fuel (toe/household)
- L unit consumption of electricity (kWh/electrified household)
- == L Advantages: simplicity (data, implementation)
- ==L Limits: difficulty to simulate substitutions (cooking, space heating), and to account for energy savings

Modelling energy demand for households : detailed approach by end-use / equipment

- Captive uses
- Ł lighting
- Ł electrical appliances by type
- Substitutable Uses
- Ł cooking
- Ł water heating
- Ł heating

🗬 Enerdata

Modelling energy demand for households : detailed approach : lighting and electrical appliances

Basic equation

Ee=MEN X TEQe X Cue

$$E = \Sigma E e$$

with:

e: Type of equipment

MEN: Number of households

TEQ: Rate of equipment ownership (% of households with equipment e)

CU : Unit consumption (kWh/year)

====> Choice of the level of disaggregation
 e= 1, 2 5 ?? (Refrigerators, Freezers, TV, Dish Washer ...)

Case Study 1 : Exercise 1

Mtoe		LPG	Oil	Gas	Electricity	Wood	Total
Heating hot wate	g/ er		0.3 x 30 = 9	0.37 x 30 = 11.1	0.1 x 30 = 3	30 - 9 - 11.1 - 3 = 6.9	30.00
Cooking	g	0.41 x 24 x 0.1 = 0.98		0.28 x 24 x 0.15 = 1.01	0.31 x 24 x 0.11 = 0.82		2.81
Lighting]		120 x 0.8 x 0.3 x 24 / 1000 = 0.69		0.7 x 24 x (400 x 0.086) /1000 = 0.58		1.27
Refr.					500 x 24 x 0.7 x 0.95 x 0.086 /1000 = 0.69		0.69
TV					100 x 24 x 0.7 x 0.9 x 0.086 / 1000 = 0.13		0.13
Others					8 - 3 - 0.82 - 0.69 - 0.13 = 2.79		2.79
Total		0.98	9.69	12.11	8	6.9	37.68

🗲 Enerdata

Case Study 1 : Exercise 2 (Ass 1)

Assumption 1: the electricity consumption per electrified household is stable

	Unit	2000	2020
Electricity consumption per electrified hh	toe/hh	8 / (0.70x24)=0.48	0.48
Electricity consumption	Mtoe	8	0.48 x (0.95x30) = 13.57

Enerdata

Case Study 1 : Exercise 2 (Ass 2)

Assumption 2: the electricity consumption per electrified household increase with a 0.5 elasticity to the income

 $HH_{2020}/HH_{2000} = (30/24)^{(1/20)} = 1.12\%/year$ D(GDP/HH) = 2.5-1.12 = 1.38%

When the income per household increase by 1%, the electricity consumption per household increase by 0.5.

Here the income per household is increasing by 1.38%year; so the electricity consumption per household is increasing by: $1.38 \times 0.5 = 0.69\%$ year

We know that electricity consumption per electrified hh in 2000 is 0.48 toe/hh

=> the electricity consumption per electrified hh in 2020 is: $0.48 \times (1+0.0069)^20 = 0.55 \text{ toe/hh} (=> 6404 \text{ kWh})$

=> The country 's electricity consumption in 2010 is: 0.55 x (30*0.95) = **15.57 Mtoe** (=> 144.88 TWh)

Urban	Consumption in 2000 (TWh)	Nb of households:
Total, of which	35 TWh	0.65 x 24 = 15.6 M
Lighting	All the electrified hh use lighting Cons: 11.7 x 400 /1000 = 4.68 TWh	Nb of electrified households:
тv	Nb of hh with TV: 0.7x15.6=10.92 M Cons: 100 X 10.92 / 1000 = 1.09 TWh	0.75 x 15.6 = 11.7 M
Refrigerators	Nb of hh with refr.:0.7x15.6 = 10.92 M Cons: 500 x 10.92 / 1000 = 5.46 TWh	
Others	35 - 4.68 - 1.09 - 5.46 = 23.77 TWh	

Case Study 1 : Exercise 3

Case Study 1 : Exercise 3

Rural	Consumption in 2000(TWh)	
		Nb of ho
Total, of which	13.6 TWh	0.35 x 2
Lighting	All the electrified hh use lighting Cons: $5.04 \times 400 / 1000 = 2.016$ TWh	Nb of el househc
тv	Nb of hh with TV: 0.5x8.4 = 4.2 M Cons: 100 X 4.2 / 1000 = 0.42 TWh	0.60 x8
Refrigerators	Nb of hh with refr.: $0.6x8.4 = 5.04$ Cons: 300 x 5.04 / 1000 = 1.512 TWh	
Others	13.6 - 2.016 - 0.42 - 1.512 = 9.652 TWh	

Nb of households: $0.35 \times 24 = 8.4 \text{ M}$

Nb of electrified households: $0.60 \times 8.4 = 5.04 \text{ M}$

eEnerdata

Case Study 1 : Exercise 4 (Ass 1) Urban Consumption in 2020(TWh) Nb of households: 0.85 x 30 = 25.5 M Total, of 10.098 + 2.347 + 11.735 + 51.29which = 75.46 TWh Nb of electrified Lighting All the electrified hh use lighting households: Cons: 25.245 x 400 /1000 = **10.098 TWh** 0.99 x 25.5 TV Nb of hh with TV: 0.7x(1+0.0138)^20x25.5 = 25.245 M =23.47 M Cons: 100 X 23.47 / 1000 = 2.347 TWh **Refrigerators** Nb of hh with refr.: 0.7x(1+0.0138)^20x25.5 = 23.47 M Cons: 500 x 23.47 / 1000 = **11.735 TWh** 23.77 / 11.7 x 25.245 = **51.29 TWh Others**

Case Study 1 : Exercise 4 (Ass 2)

Urban	Consumption in 2020(TWh)	Nb of households:
Total, of which	10.098 + 3.075 + 11.735 + 51.29 = 76.19 TWh	0.85 x 30 = 25.5 M
Lighting	All the electrified hh use lighting Cons: 25.245 x 400 /1000 = 10.098 TWh	Nb of electrified households:
тv	Nb of hh with TV: $0.7x(1+0.0276)^{20x25.5}$ =30.075 M	0.99 x 25.5 = 25.245 M
Refrigerators	Nb of hh with refr.: $0.7x(1+0.014)^{20x25.5}$ = 23.47 M Cons: 500 x 23.47 / 1000 = 11.735 TWh	
Others	23.77 / 11.7 x 25.245 = 51.29 TWh	

eEnerdata

Case Study 1 : Exercise 4 (Ass 3)

Urban	Consumption in 2020(TWh)	
Total, of which	6.867 + 2.46 + 9.388 + 51.29 = 70.000 TWh	Nb of households: $0.85 \times 30 = 25.5 M$
Lighting	All the electrified hh use lighting Cons: $(0.4 \times 25.245 \times (400 \times 0.2) + 0.6 \times 25.245 \times 400) / 1000 = 6.867 \text{ TWh}$	Nb of electrified households:
τν	Nb of hh with TV: 0.7x(1+ 0.0276)^20x25.5 =30.075 M Cons: (100x0.8) X 30.075 / 1000 = 2.460 TWh	0.99 x 25.5 = 25.245 M
Refrigerators	Nb of hh with refr.: 0.7x(1+0.014)^20x25.5 = 23.47 M Cons: (500x0.8) x 23.47 / 1000 = 9.388 TWh	
Others	23.77 / 11.7 x 25.245 = 51.290 TWh	

Case Study 2 : Exercise 1

	Number of cars (NBCA)	Diesel demand of cars (FCCA)
Formula	$NBCA_{t+5} = NBCA_t \times (1+GRNBCA)^5$	$FCCA_{t+5} = NBCA_{t+5} \times UCCA_t$ With UCCA _t = FCCA _t /NBCA _t
Unit	М	Mtoe
2005	4.400 x (1+0.045)^5 = 5.483	2.100 / 4.400 x 5483 = 2.617
2010	5.483 x (1+0.045)^5 = 6.833	=2.100 / 4.400 x 6833 = 3.261

🗬 Enerdata

Case Study 2 : Exercise 2

	Number of cars (NBCA)	Unit consumption of cars (UCCA)	Diesel demand of cars (FCCA)
Form	NBCA _{t+5} = NBCA _t x (1+(GRGDPxELGDP)^5	UCCA _{t+5} = UCCA _t x (1+GRUCCA(t))^5	$FCCA_{t+5} = NBCA_{t+5} \times UCCA_{t+5}$
Unit	Μ	toe	Mtoe
2000	4.400	2.100 / 4.400 = 0.48	
2005	4.400 x (1+(0.3x1.5)^5 = 5.101	0.48 x (1-0,01)^5 = 0.45	5.101 x 0.45 = 2.315
2010	5.483 x (1+(0.3x1.5)^5 = 6.357	0.45 x (1-0.02)^5 = 0.41	6.357 x 0.45 = 2.608

	Case Study 2 : Exercise 3			
1	Number of cars (NBCA)	Specific consumption of cars (SCCA)	Average distance driven per car (KMCA)	Diesel demand of cars (FCCA)
Form		$SCCA_{t} = UCCA_{t} / CFDS / KMCA_{t}$ $SCCA_{t+5} = SCCA_{t} \times (1+GRSCCA)^{5}$	KMCA _{t+5} = KMCA _t x (1+(GRPRGS x ELPRGS)^5	FCCA _{t+5} = NBCA _{t+5} x UCCA _{t+5} x CFDS x KMCA _{t+5}
Unit	М	l/100km	km	Mtoe
2000	4.400	0.48 / 0.88 / 8000 x 100000 = 6.78	8000	2.100
2005	5.101	6.78 x (1-0,01)^5 = 6.45	8000 x (1 + 0,01 x - 0.1)^5 = 7960	6.45 x 5.101 x 0.88 x 7960 / 100000 = 2.304
2010	6.357	6.45 x (1-0.02)^5 = 5.83	7960 x (1 + 0 x -0.1)^5 = 7960	5.83 x 6.357 x 0.88 x 7960 / 100000 = 2.595

🗬 Enerdata

Case Study 2 : Exercise 4

Elasticity of the number of cars to GDP: dNBCA/NBCAt / dGDP/GDPt Where dY/Y is the average yearly variation

(4.400/1.840)^(1/10) / (205474/144569)^(1/10) = **1.05**

Case Study 2 : Exercise 4

	Number of cars (NBCA)	Specific consumption of cars (SCCA)	Average distance driven per car	Diesel demand of cars (FCCA)
	NBCA _{t+5} = NBCA _t x (1+(GRGDPxELGDP)^5			
Unit	М	l/100km	km	Mtoe
2000	4.400	6.78	8000	2.100
2005	4.400 x (1+ (0.02 x 1.05) ^5) = 4.883	6.45	7960	6.45 x 7960 x 5.141 x 0.88 / 100000 = 2.205
2010	5.141 x (1 + (0.03 x 1.05)^5 = 5.705	5.83	7960	5.83 x 7960 x 6.006 x 0.88 / 100000 = 2.329

	Case St	udy 2 : Exercise	I finally to a potentia 30% and	I finally took the assumption of a potential of 10% instead of 30% and I keep the data for the	
	Number of cars (NBCA)	Specific consumption of cars (SCCA)	<pre>/ exploitatio c are more c reality.</pre>	on. These assumptions cars consistent with the	
		$SCCA_{t+5} = SCCA_t x$ (1+(POTCA_{t+5} xTEXCA_{t+5})5			
Unit	М	l/100km	km	Mtoe	
2000	4.400	6.78	8000	2100	
2005	5.141	6.78 × (1+(-0.1x0.2)) = 5.82	7960	5.82 x 7960 x 5.141 x 0.88 / 100000 = 1.991	
2010	6.006	6.45 x (1+(-0.1x0.5)) = 4.50	7960	4.5 x 7960 x 6.006 x 0.88 / 100000 = 1.800	